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Bumble bees are among the most ecologically and

economically important pollinators worldwide, yet many of their

populations are being threatened by a suite of interrelated,

human-mediated environmental changes. Here, I discuss

recent progress in our understanding of bumble bee

ecophysiology, including advances related to thermal biology

in light of global warming; nutritional biology in the context of

declining food resources; and the capacity for bumble bees to

exhibit physiological plasticity or adaptations to novel or

extreme environments, with reference to their evolutionary

history and current biogeography.
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Introduction
The extant bumble bees (genus Bombus, family Apidae) are

a group of �250 largely cold-adapted, relatively large-

bodied bee species, with native species distributed widely

throughout the Americas, Eurasia, and parts of Northern

Africa [1,2]. Due to their primarily generalist foraging

patterns, bumble bees have broad ecological importance

in plant-pollinator networks, and the pollination services of

a few species are intensively managed for commercial crop

pollination in many parts of the world [3]. Bumble bees are

also longstanding model systems in ecological and evolu-

tionary research [4,5], and have recently emerged at the

forefront of molecular research on non-Apis pollinators,

with genomes published for two species and a variety of

additional transcriptomic and other large molecular data-

sets available [6,7��].

Over the last decade, bumble bees have received consid-

erable, growing attention related to human-mediated pop-

ulation declines and range shifts [8,9]. Although the group

appears to have experienced substantial species losses prior
www.sciencedirect.com 
to the Anthropocene [10�], a growing body of evidence

suggests that worldwide, some bumble bee populations are

being increasingly threatened by factors associated with

human activity, such as the intertwined effects of agricul-

tural intensification and climate change [11,12]. Although

there is no singular cause of bumble bee decline, and

implicated factors appear to interact synergistically [11],

the evidence that recent changes in habitat quality are a

primary driver of bumble bee decline is particularly com-

pelling. Bumble bees require suitable habitat for foraging,

nesting, and for queen overwintering; among these, loss of

foraging habitat has been studied most extensively, and its

negative impacts on bumble bees have been demonstrated

through a multitude of lines of evidence, including reduced

survival of family lineages through time in areas with fewer

floral resources [13��] and positive associations between

food availability and the production of reproductives

(queens and/or males) in wild [14], semi-wild [15], and

laboratory [16] studies.

Implicit to many studies of bumble bee declines or range

shifts, or even explicitly stated, is the assumption that

these observed patterns are strongly or in part driven by

the physiological limits of bumble bees (e.g., loss of

species from the southern parts of their ranges due to

limitations in upper thermal tolerance limits [12]). Yet,

much remains unknown about bumble bee physiology

and the true limits imposed by their environment, espe-

cially how this varies across the many bumble bee species

and their respective ecological contexts. In the 1970s–90s,

there were substantial advances in the field of bumble bee

physiology, particularly in regard to flight physiology and

thermoregulation [5]. This period was followed by a

distinct decline in research in this area, with some excep-

tions, including continued laboratory work on endocri-

nology and neurobiology, particularly in the context of

bumble bee sociobiology [17–20]. However, in recent

years, there has been a resurgence of bumble bee physi-

ological research, including examinations of how physiol-

ogy functions with respect to ecologically relevant,

dynamic conditions. This work is central to our under-

standing of bumble bee decline, in that it sheds light on

how some of the broader forces that are negatively

impacting bees, such as climate change, actually impact

individual bee survival, reproduction, and other processes

that are at the core of population health. This review

focuses on this interface between bumble bee physiology

and the human-mediated factors contributing to their

decline (Figure 1), with an emphasis on the two areas

of most rapid growth (thermal biology and nutrition), and
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Figure?1
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Bumble bee physiology interfaces with human impacts. Major human impacts on bumble bees include the loss or alteration of foraging

habitat, global warming and drought, and the human activity-induced movement of bumble bees to higher latitudes and elevations. These

intertwined forces present ecological challenges for bumble bees that have direct physiological consequences; examples are shown here.

Identifying how these challenges interface with bee physiology is essential for understanding the mechanistic basis of stressors involved in bumble

bee decline. Artwork by A. Sanderson.
with the perspective that ecophysiology is among the

most important research frontiers for generating insights

into the fate of bumble bees in the face of global change.

Thermal biology: cold-adapted bees on a
warming planet
The majority of the world’s bumble bee species are found

in Holarctic, alpine, or other temperate environments,

and thus previously an emphasis has been placed on

understanding bumble bee adaptations to the cold, such

as thermoregulatory adaptations for foraging at relatively

low ambient temperatures [21]. More recently, this

emphasis has shifted toward their ability to tolerate the

increasing ambient temperature conditions associated

with global warming. Assessments of how individual bees

are impacted by acute heat stress events have identified

that bumble bees in the Holarctic subgenus Alpinobombus
are more susceptible [22]. However, even heat-adapted

subgenera living in areas with extreme summer tempera-

tures might be threatened, particularly if queens emerge

later in the year and more of their flight period occurs in
Current Opinion in Insect Science 2017, 22:101–108 
the height of summer [23]. Examinations of cold toler-

ance in Bombus terrestris have identified the first evidence

for rapid cold hardening in bumble bees (in fact, in any

Hymenoptera; [24,25]) and have identified that workers

and, in particular, queens can survive acute cold periods if

they become active during winter months [24]. Additional

studies have explored critical thresholds of oxygen avail-

ability needed for thermoregulation [26], and upper and

lower critical thermal limits of species found at different

altitudes [27]. Queen and male bumble bees spend much

of their life cycle removed from a social colony environ-

ment and without the benefit of colony-level thermoreg-

ulatory strategies, such as organized fanning behavior

[28,29]. Thus, individual bumble bee thermoregulatory

abilities are likely more important for males and perhaps

even more so queens, who live much longer (up to nearly

a year), including through a solitary overwintering period.

Scriven and colleagues [30] have found support for this

idea in the B. lucorum species complex, where queens and

males, but not workers, follow Bergmann’s rule, which

states that larger-bodied individuals will be more
www.sciencedirect.com
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prevalent under cooler conditions due to thermoregula-

tory constraints [31]. Vesterlund and colleagues further

examined queen thermoregulatory physiology in B.
lucorum and found interactive effects with nutritional

state, in that queens can survive longer under starvation

conditions at lower temperatures [32], and that there are

critical weight thresholds below which queens will not

survive the period, irrespective of overwintering temper-

ature conditions [33]. Young queens sequester substantial

levels of lipids and glycogen in the fat body that they

largely metabolize during the overwintering period

[34,35], and interactive effects of nutrition and overwin-

tering temperature may be related to a higher rate of

metabolic processes under warmer temperature condi-

tions, although this has not yet been demonstrated in

bumble bees. Collectively, these studies speak to how

bumble bee queens may fare more poorly, including in

non-additive ways, in environments where both floral

resource availability and abiotic conditions are undergo-

ing major changes.

Drought, which is precipitated by warming conditions,

also likely has direct and indirect negative impacts on

bumble bee populations. Water balance is an under-

studied area in bee research, with additional complexity

in social species where colony-level components should

be considered, in addition to individual homeostasis (see

[36] for a thorough review on this topic). The mechanisms

underlying water balance in bumble bees deserve further

study, as they are unique from honey bees and are almost

certainly strained under drought conditions. For example,

unlike honey bees, bumble bees typically do not forage

for water (but see [37]), and thus obtain water for indi-

vidual homeostasis from nectar, and they use dry fanning

(i.e., without the evaporative method used by honey

bees) as their primary means of cooling the colony.

Drought impacts on floral resources is an emerging topic

in pollinator research, and early work in this area suggests

that in addition to directly limiting resource availability,

there can also be more nuanced effects, such as changes in

attractiveness to pollinators via altered plant volatile

profiles [38] and impacts on competitive interactions

between floral visitors [39].

Nutritional biology of a generalist pollinator
Bee nutritional states are in part a function of the feeding-

related decisions bees make, given the floral resources

available in their surrounding landscape and the energy

exerted for resource collection. Bumble bee nutritional

biology is another rapidly expanding research area, which

is being driven in part by the desire to use empirically-

informed foraging habitat management practices that

address foraging preferences and ultimately optimize

bee health [40]. Bumble bees exhibit individual foraging

preferences that are driven in part by direct assessments

of floral rewards. Whereas earlier work focused largely on

nectar valuation [5,41], the growing body of research in
www.sciencedirect.com 
this field has shifted focus to examine pollen, which is a

compositionally more complex reward [42] (but see [43]

for more recent work on nectar). These pollen-based

studies have demonstrated that bumble bees may exhibit

preferences for sweeter (vs. bitter) [44] and higher quality

(vs. artificially modified with cellulose) [45] pollen, and

may use their antennae to obtain chemotactile cues about

pollen quality [46] and to differentiate between pollen

from unique plant species [47��]. As in other organisms

[48], this decision-making process is partially dependent

on nutritional state, and workers may feed preferentially

to achieve nutrient balance with respect to relative amino

acid profiles [49,50] and protein to lipid ratios [51,52��].
Feeding-related decision making in bumble bees has also

been examined in the context of non-nutritive food

components. Research by Tiedekan et al. [53] has iden-

tified that bumble bees can taste and exhibit differential

deterrence thresholds for unique nectar-derived second-

ary compounds, which complements work demonstrating

that these compounds may be ingested to confer health

benefits (e.g., self-medication against Crithidia infection;

[54]). Interestingly, adult bumble bee workers may pref-

erentially feed from nectar containing neonicotinoid

insecticides, although this phenomenon appears to oper-

ate through effects on the nervous system (putatively, on

nicotinic acetylcholine receptors) that do not involve

primary components of taste-related neural circuity

[55��].

Pollen availability is directly important for adult life

stages in bumble bees, as adult workers consume pollen

to the benefit of their health; for example, in B. terrestris
[56] and B. impatiens [57], workers that are deprived of

pollen and infected with the parasite Crithidia exhibit

decreased immune responses and increased parasite

loads, respectively. However, the consequences of worker

foraging preferences are perhaps most relevant to the

primary recipients of collected pollen: developing brood

in the colony. Microcolony experiments have been used

to demonstrate that polyfloral pollen diets and/or avoid-

ance of particular monofloral pollen diets [58–62,63�], and

pollen with higher amino acid concentrations [64,65],

have positive effects on larval or colony development

in B. terrestris, although work by Moerman and colleagues

[66] demonstrating species-specific effects of diet on

microcolony development suggests that these results in

B. terrestris may not directly translate to other bumble bee

species. A higher-level insight emerging from this work is

that bumble bees tend to develop better (for example,

more rapidly) when they consume pollen from multiple

plant species, which is consistent with their largely gen-

eralist foraging habits. The corollary of this insight is that

habitats with lower floral resource diversity do not opti-

mally support bumble bees, and indeed this is what has

been found repeatedly in field studies (e.g., [67,68]). In a

complementary approach, researchers have also begun

using metrics that are reflective of nutritional state (e.g.,
Current Opinion in Insect Science 2017, 22:101–108
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sponses to changing environments? Examples of bumble bees living in

ost bumble bee species are found). Examples of characteristic features of

epresentative species are listed in the table and depicted in the images
l-
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pid levels in bumble bees [69]; fat body mass in honey

bees [70]) to investigate how land management practices

interface with bee nutritional physiology. Now, a greater

synthesis is needed between nutritional landscape ecol-

ogy and bee physiology, in order to identify how bee

nutrition is shaped by resource availability and floral

preference, and to ultimately interpret the physiological

significance of bee nutritional states.

Bumble bees in novel and extreme
environments
The overwhelming majority of the world’s bumble bee

species live in temperate zones and at altitudes up to or

slightly above 5000 m, but there are some notable excep-

tions (Figure 2). For example, some bumble bee species

(namely in the subgenus Alpinobombus) inhabit the Arctic,

despite the dramatically lengthened overwintering

period, shortened summer nesting season, and relatively

cool (�5 �C) summer foraging temperatures in this region

(although some of these features of the Arctic are

dramatically changing; [71]). Research in the 1990s

identified a key thermal strategy used by arctic queen

bumble bees to persist under such extreme seasonality:

the consistent upregulation of abdominal temperature,

putatively for rapid ovary development upon emergence

from overwintering; [72–74]. More recent work suggests

that foragers can entrain their circadian clocks using UV

light [75], which may aid in maintaining rhythmicity

under the midnight sun, but additional adaptations

Figure?2
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Bumble bees in extreme environments: models for anticipating re

extreme environments (i.e., different from the temperate areas where m

each environment that are relevant to bumble bees are included and r

above. Artwork by A. Sanderson.
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related to arctic inhabitation by bumble bees are currently

unknown. Bumble bees are also found in subtropical and

lowland tropical areas, where they may extend their

nesting season and even nest perennially with multiple

queens [76]; at high elevations, which may be more

representative of ancestral conditions, and where flight

abilities might be challenged [77�]; and in deserts, where

extreme daytime temperatures may strongly shape forag-

ing activity periods [78] to minimize water loss and heat

stress, as is observed in other desert-dwelling bees [79].

The presence and persistence of bumble bees in these

relatively unusual environments suggests that additional

lineages within the extant bumble bee group may possess

the plasticity or adaptive capability required for coping

under similar environmental conditions. Thus, these spe-

cies may serve as models for identifying the general

capacity of bumble bees, which likely evolved in the

cool, alpine Sizchuan region of China [80,81], to modify

their physiology in order to meet a wide variety of

ecological challenges. However, most bumble bee

lineages likely have more limited flexibility, given the

relative rarity of bumble bees in these extreme environ-

ments, and the evidence that many declining populations

are limited in their ability to undergo range shifts [12,82].

An exception is the small number of species that easily

acclimate to vastly different environments, such as the

heavily managed B. terrestris, which has been introduced

in several parts of the world outside of its native range
www.sciencedirect.com
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(e.g., Chile and Argentina, Japan, New Zealand) and has

since spread beyond introduction sites to new areas, a

trend that is predicted to continue [83].

As the planet continues to become less hospitable for

many pollinators [84], and less like the original ecological

conditions under which the bumble bee lineage arose

[80,81], the physiological flexibility of bumble bees will

become increasingly important for their persistence,

either in their current environments or as they move to

inhabit new areas. Some bumble bee populations already

appear to be shifting northward, such as the movement of

Scandinavian populations of B. terrestris and B. lapidarius
north of the Arctic Circle [85]; other populations appear

limited in their ability for northward movement, despite

contractions at the southern parts of their ranges [12].

Other populations appear to be moving to higher eleva-

tions [12,86,87], where they may inhabit montane refugia

that are more buffered from human impacts. Lower

oxygen levels and lower air density make insect flight

more challenging at higher altitudes (reviewed in [88]),

although experimental transplants of bumble bees to

elevations higher than they naturally occur suggest some

flexibility for upward movement, despite these

challenges [77�]. Recent work on bumble bee flight

metabolism and respiration [89–92] and flight biomechan-

ics (e.g., [93–95]) dually contributes to our understanding

of the basic biology of bumble bees, and also how the

metabolic and mechanical challenges associated with

movement to higher elevations might be met by

upwardly-migrating populations. Under both latitudinal

and altitudinal movement scenarios, bumble bees may

encounter new challenges as they crowd into refugia, such

as greater competition with congenerics and other bee

groups as they converge on similar floral resources

[96–98], or the spread of disease-related microorganisms

to new areas and between and within newly-assembled

bee communities [99,100]. For example, the human-

facilitated spread of B. terrestris into South America has

been linked to both of these phenomena, which appear to

be drivers in the decline of the native species B. dahlbomii
in this region [99,101,102]. Continued explorations of

bumble bee physiology and competitive interactions

under dynamic, field-realistic conditions are critical for

anticipating the outcomes of these scenarios, and for

managing habitat to ameliorate negative impacts on bum-

ble bee populations.

Conclusion
Bumble bees face a variety of human-mediated threats;

ecophysiological research is critical for understanding

their susceptibility and resilience to these pressures,

and for modeling how populations will respond to chang-

ing ecological conditions. Recent advances in bumble bee

ecophysiological research, which focuses on organismal

function, can complement studies in the fields of polli-

nation biology and landscape and community ecology, by
www.sciencedirect.com 
shedding light on the underlying physiological mecha-

nisms that shape ecosystem-level patterns and processes.

A key area of future progress is an improved understand-

ing of how thermal biology, nutrition, and other classic

components of insect ecophysiological research [103]

integrate and act synergistically with other environmental

stressors that are historically outside of the scope of

ecophysiology. This will include, for example, examining

how the detoxification and immune response machinery

in bumble bees, which have been identified via genome

sequencing [7��] and functional genomic studies

[104,105], operate as a function of thermal conditions

and bee nutritional state. Disease-causing organisms

and pesticides have been strongly implicated in the

decline of bumble bees (reviewed in [11,106]). However,

research on these factors has focused primarily on preva-

lence and effects of exposure on mortality and colony

development, respectively, and less on their physiological

effects (but see [107] for an examination of how pesticide

exposure impacts bumble bee queen ovary development,

and [108] for an exemplary study addressing combined

effects of pesticides and pathogens on queen detoxifica-

tion- and immune-related enzyme activities in honey

bees). Another important research area is the integration

of bumble bee sociobiology with ecophysiology, to

explore how the social environment inside the nest and

the foraging environment interact to shape physiological

processes. Ongoing advances in this area are a necessary

and timely component of the effort to identify and predict

how our changing planet will continue to impact this

enormously important pollinator group.
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